MARK SCHEME for the May/June 2009 question paper
for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS
0607/04 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of
the examination. It shows the basis on which Examiners were instructed to award marks. It does not
indicate the details of the discussions that took place at an Examiners’ meeting before marking began,
which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the
examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE
Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
M marks are given for a correct method.
A marks are given for an accurate answer following a correct method.
B marks are given for a correct statement or step.
D marks are given for a clear and appropriately accurate drawing.
P marks are given for accurate plotting of points.
E marks are given for correctly explaining or establishing a given result.

Abbreviations

cao correct answer only
cso correct solution only
ft follow through
oe or equivalent
soi seen or implied
ww without working
www without wrong working
1 (a) \[\frac{200 (or 2200)}{20} = 10 \text{ (or 200)} \times 11 \quad \text{oe} \]

M1 M1

Implied by 10

Independent

(b) 57.5(0)

B2

If B0, M1 for \(\frac{50 \times 5 \times 3}{100} \) oe

(Implied by 7.50)

(c) 67.49 as final answer

B3

If B0, M2 for \(60 \left(1 + \frac{4}{100} \right)^3 \) oe

M1 for \(\times 1.04 \) more than once oe

67.49… or 67.5 imply M2

[7]

2 (a) 37.2 (or 37.20 – 37.21)

B1

(b) 37

B1

(c) 36

B1

(d) 36

B1

(e) 2

B1

[5]

3 (a) \((x + 2y)(2 + p)\)

B2 B1 for \(2(x + 2y) + p(x + 2y)\) o.e.

(b)

Reasonable sketch of parabola (U shape)
cutting x-axis either side of y-axis – dep

\(-2.16, 1.16\)

M1 M1dep

A1, A1

If using formula, M1 for \(\sqrt{2^2 - 4(2)(-5)} \)

seen

and if form \(\frac{p + (or-)\sqrt{q}}{r} \) then M1 for

\(p = -2 \) and \(r = 2 \times 2 \)

\(\left(\frac{-2 \pm \sqrt{44}}{4} \right) \)

SC1 for \(-2.2, 1.2\) or

\(-2.158…, 1.158…\) with or without working

SC2 for \(-2.16, 1.16\) without working

(c) \(y = k\sqrt{w} \)

\(4 = k\sqrt{9} \)

\((y) = 8\)

www3

M1 M1

If using \(\frac{y}{4} = \frac{\sqrt{36}}{\sqrt{9}} \)

M2

A1

\(k = \frac{4}{3} \) implies M2

[9]
4 (a)

KL

| B1 |

(b)

AB

C

| B2 | SC1 for any 4 of the 5 parts shaded |

(c)

4

| B2 |

Do not allow any decimals in answers

5 (a) (i)

Correct shape
Point of inflexion at origin

| B1 | B1dep |

(ii)

Correct shape
Correct position relative to axes

| B1 | B1dep |

(b)

0, 4 cao

| B1,B1 |

Do not allow any decimals in answers

(c)

(3, −27) cao

| B1,B1 |

Do not allow any decimals in answers

(d)

−2.33 (−2.325…), 4.41 (4.407 − 4.408)

| B1,B1 | SC1 for −2.3 and 4.4 |

© UCLES 2009

www.Students-Resource.com
Question 6

Part (a)

\[35 + \text{their}(\frac{1}{4} \times 4) \]

\[= \frac{2 \frac{1}{2} + 1 \frac{1}{4}}{9.88} (9.882\ldots) \]

Denote this as \(M2 \)

\[M1 \text{ for } 1\frac{1}{4} \times 4 \text{ or 7 seen} \]

Denote this as \(A1 \)

Part (b)

\[(i) \ 10 \div 12.6 \times 60 \ oe \]

\[= 47.6 (47.61 - 47.62) \]

Denote this as \(M1 \)

Denote this as \(A1 \)

\[10 \div 0.21, 0.7936 \times 60 \]

Allow 48 also

\[(ii) \ 12.6 \div 1.05 \ oe \]

Denote this as \(M1 \)

Denote this as \(A1 \)

\[12 \]

\[\text{www2} \]

\[7 \] **Part (a)**

\[(i) \ + 1, \text{ then } \div 2 \text{ or } \frac{y + 1}{2} \text{ or } x = 2y - 1 \]

\[\frac{x + 1}{2} \ oe \]

Denote this as \(M1 \)

Denote this as \(A1 \)

\[\frac{y + 1}{2} \text{ scores } M1 \text{ only} \]

Part (b)

\[(i) \ \sqrt[3]{x} \ oe \]

Denote this as \(B1 \)

\[(ii) \ \text{Reasonable sketch to be close to } (-1,0), (0, 0.5) \text{ and } (1, 1) \text{ 2 mm accuracy} \]

\[(iii) \ \text{Reflection } y = x \]

Denote this as \(B1 \)

Denote this as \(B1 \)

Denote this as \(B1 \)

\[\text{ft only if their graph is a reflection correct or ft} \]

\[[7] \]

\[[8] \]
8 (a) (i) \[\frac{3^2 + 5^2 - 7^2}{2 \cdot 3 \cdot 5} \]
\[120^\circ \]
M2
M1 for correct implicit equation \(7^2 = \ldots \)
Any other method must be complete and scores M2
A1
Without any working SC2
If M0, but 60° after some working SC1
Radians answer 2.09 without working SC1
(ii) \[0.5 \times 3 \times 5 \sin(\text{their } 120) \]
\[6.5(0) \ (6.495 \ldots) \text{ ft} \]
M1
A1 ft
(For Hero’s formula \(s = 7.5 \))
B1
B1 ft their angle with relevant sides
(b) (i) \((0)40 \)
B1
(ii) 280 cao
B2
M1 for 100 (or 220 – their (a)(i)) at \(P \) or 80 (or their (a)(i) – 40) at \(B \)

9 (a)
Reasonable sketch of cubic with two turning points seen in correct order
2 turning points in correct quadrants
B1

(b)
\[-11.1 \text{ to } 4.24 \ (\sim 4.236\ldots) \] as final answer
B1
Penalty –1 for double or feathery lines
B1, B1
SC1 –11 to 4.2
or SC1 for both 3 sf (or more) numbers seen
10

Throughout the question ratios score zero. If using decimals, 2 s.f. correct answers – penalty of 1 once. Use of words e.g. 5 in 28 or 5 out of 28, correct answers – penalty of one once. For method marks only accept probabilities between 0 and 1

(a)

(i) \(\frac{14}{28} \text{ oe} \), \(\frac{5}{28} (0.179) \), \(\frac{9}{28} (0.321) \)
B1,B1,B1

(ii), (iii) \(0.5, 0.1785 – 0.1786, 0.3214… \)

(b)

(i) \(\frac{14}{28} \times \frac{14}{28} \text{ oe} \left(\frac{1}{\frac{4}{7}} \right) \text{ www 2} \)
M1

A1

(ii) \(2 \times \frac{14}{28} \times \frac{5}{28} \text{ oe} \)
\(\frac{140}{784} \text{ oe} \left(\frac{5}{28} \right), (0.179) \)
M1

A1

0.1785 – 0.1786

(iii) \(1 - \frac{9}{28} \times \frac{9}{28} \text{ oe} \)
\(\frac{703}{784} \text{ oe} (0.897) \text{ www 2} \)
M1

A1

0.8966 – 0.8967

11

(a)

Similar
B1

Allow enlargement oe

(b)

(i) \(\frac{QT}{2.5} = \frac{6}{3} \text{ oe} \)
\(\frac{5}{\text{www2}} \)
M1

A1

(ii) \(\left(\frac{6}{5} \right)^2 \text{ or } k^2 \text{ oe} \)
\(11.2 \text{ cao www2} \)
M1

A1

\(k \) must be from (i)

(iii) \(\sin X = \frac{\sin 26.5}{3} \times 2.5 \)
\(21.8 (21.82 – 21.83) \text{ www3} \)
M2

M1 for any correct implicit form
\(\text{e.g. } \frac{\sin X}{2.5} = \frac{\sin 26.5}{3} \text{ www2} \)
A1

Radians 0.9546.. ww implies M2
12 (a) \[\frac{30}{360} \times \pi \times 24 \] oe

\[6.28 \quad (6.28 - 6.284) \quad \text{www2} \]

M1

A1

Accept 2 \(\pi \)

(b) \[\frac{30}{360} \times \pi \times 12^2 \]

\[37.7 \quad (37.68 - 37.70..) \quad \text{www2} \]

M1

A1

Accept 12 \(\pi \)

(c) their \((b) \times 3 \)

\[113 \quad (113.0 - 113.1..) \quad \text{ft} \quad \text{www2} \]

M1

A1

Accept 36 \(\pi \)

(d) their \((b) \times 2 \)

\[2 \times 3 \times 12 \]

their \((a) \times 3 \)

\[166 \quad (166.2 - 166.3) \quad \text{cao} \quad \text{www4} \]

M1

M1

M1

A1

Accept 30 \(\pi + 72 \)

13 (a) 10 correct points

B3

B2 for 8 or 9 correct points, **B1** for 6 or 7 points

(b) Positive

B1

Ignore any wording which does not spoil answer

Accept accurate description linking height to points

(c) (i) 179.9, 53.2

B1,B1

Accept 180 for 179.9

(d) (i) \(p = 0.386h - 16.2 \)

\[(0.3855 - 0.3856) \quad (\text{–16.16}..) \]

B2

If seen in correct form **B1** for 0.386, **B1** for –16.2. (Allow 0.39)

SC1 if in correct form and both terms correct to 2 sf

(ii) Line through their \((179.9, 53.2) \) seen to be plotted.

Would extend to \(p \)-axis within 3 squares of 45

B1

Must be ruled and be from at least 165 to 190

Gradient must be positive

SC1 if accurate and not ruled

(iii) 52 or 53 or 54

B1

Must be integer
14 (a)

- \(y = 2x \) through (0, 0) and (5, 10)
- \(x + y = 10 \) through (10, 0) and (0, 10)
- \(2x + y = 10 \) through (5, 0) and (0, 10)

Each straight line ruled L1
Max 2 if not ruled L1
Allow 2 mm accuracy at points indicated L1

14 (b)

Correct region unshaded ft B1 ft

14 (c)

(i) 3.2 – 3.4 ft B1 ft

14 (d)

1, 9
2, 7 ft B1 ft

15 (a)

(i) 30 B1

(ii) \(\frac{360}{x} \) B1

(iii) \(\frac{360}{x + 8} \) B1

15 (b)

(i) \(\frac{360}{x} - \frac{360}{x + 8} = 16 \) oe M2

360(x + 8) – 360x = 16x(x + 8) oe M1

360x + 2880 – 360x = 16x² + 128x E1

16x² + 128x – 2880 = 0

x² + 8x – 180 = 0

SC1 for sign errors SC1

Dep on M2 or SC1, for correctly putting all three terms over common denominator or multiplying throughout by \(x \) and \(x + 8 \). Dependent on M2 M1.

At least one of these two lines oe before final conclusion without any errors or omissions. Condone the absence of \(= 0 \) only once.

(ii) \((x + 18)(x – 10)\) B2

If B0, SC1 for \((x ± p)(x ± q)\) with values of 10 and 18 for \(p \) and \(q \)

(iii) –18, 10 ft B1 ft

Correct or ft SC1

(iv) 10 B1 ft

Can ft a positive root