Menu
header photo

Smart Edu Hub

Cambridge Checkpoints / IGCSE / AS and A levels

IGCSE Past Papers Maths

View All Member Area Resources

0580_m24_qp_22 Question 8 Solution

Part (a):

The n-th term of the sequence is given as n2 - 3. Substituting the values for n = 1, n = 2, and n = 3:

For n = 1: 12 - 3 = -2
For n = 2: 22 - 3 = 1
For n = 3: 32 - 3 = 6

Therefore, the first three terms are:

-2, 1, 6

Part (b):

The given sequence is: 1, 3, 9, 27, 81. Let's analyze the differences:

From 1 to 3: Multiply by 3
From 3 to 9: Multiply by 3
From 9 to 27: Multiply by 3
From 27 to 81: Multiply by 3

This is a geometric sequence where each term is obtained by multiplying the previous term by 3. The general form of a geometric sequence is:

nth term = first term × (common ratio)n-1

Here:

First term = 1
Common ratio = 3

Therefore, the n-th term of this sequence is:

3n-1

View All Member Area Resources

0580_m24_qp_42 Question 4 Solution

Part (a):

(i) Calculate the volume of the pyramid:

The formula for the volume of a pyramid is:

V = (1/3) × A × h

Where:

  • A is the area of the base
  • h is the perpendicular height of the pyramid

The base is a square with side length 12 cm:

A = 12 × 12 = 144 cm2

The perpendicular height of the pyramid is 9 cm.

Substituting the values into the formula:

V = (1/3) × 144 × 9 = 432 cm3

Final Answer: 432 cm3

(ii) Calculate the total surface area of the pyramid:

The total surface area consists of:

  • The area of the base: 144 cm2
  • The area of the 4 triangular faces

Each triangular face has a base of 12 cm. The slant height (l) can be calculated using Pythagoras' theorem:

l = √(62 + 92) = √(36 + 81) = √117 ≈ 10.8 cm

The area of one triangular face:

Atriangle = (1/2) × base × slant height = (1/2) × 12 × 10.8 = 64.8 cm2

Total area of the 4 triangular faces:

4 × 64.8 = 259.2 cm2

Adding the base area:

Total surface area = 144 + 259.2 = 403.2 cm2

Final Answer: 403.2 cm2

Part (b):

The total surface area of the toy is the sum of:

  • The curved surface area of the cone: Acone = πr × l
  • The curved surface area of the hemisphere: Ahemisphere = 2πr2

The slant height of the cone is 3r. Therefore:

Acone = πr × (3r) = 3πr2

The total surface area is given as 304 cm2:

304 = 3πr2 + 2πr2

304 = 5πr2

Solve for r2:

r2 = 304 / (5π) ≈ 304 / 15.707 ≈ 19.36

Solve for r:

r = √19.36 ≈ 4.4 cm

Final Answer: 4.4 cm

View All Member Area Resources

0580_m23_qp_22 Question 7 Solution

Part (a):

Solve 15t + 8 = 4 - t

  1. Combine like terms:

    15t + t = 4 - 8

    16t = -4

  2. Solve for t :

    t = -4 ÷ 16 = -1/4

Final Answer:t = -1/4


Part (b):

Solve (25 - 2u) ÷ 3 = 2

  1. Eliminate the denominator by multiplying both sides by 3:

    25 - 2u = 6

  2. Rearrange to isolate u :

    -2u = 6 - 25

    -2u = -19

  3. Solve for u :

    u = 19 ÷ 2 = 9.5

Final Answer: u = 9.5

View All Member Area Resources

0580_s23_qp_41 Question 3 Solution

View All Member Area Resources

0580_s23_qp_41 Question 3 Solution

Part (a):

The table shows information about the mass of each of 1000 eggs:

Mass (m grams) Frequency
40 < m ≤ 50126
50 < m ≤ 56520
56 < m ≤ 64154
64 < m ≤ 70200

(i) Calculate an estimate of the mean:

Step 1: Calculate the midpoint for each group:

  • 40 < m ≤ 50: midpoint = (40 + 50) ÷ 2 = 45
  • 50 < m ≤ 56: midpoint = (50 + 56) ÷ 2 = 53
  • 56 < m ≤ 64: midpoint = (56 + 64) ÷ 2 = 60
  • 64 < m ≤ 70: midpoint = (64 + 70) ÷ 2 = 67

Step 2: Multiply midpoint by frequency:

  • 126 × 45 = 5670
  • 520 × 53 = 27560
  • 154 × 60 = 9240
  • 200 × 67 = 13400

Step 3: Total frequency = 126 + 520 + 154 + 200 = 1000

Step 4: Total of midpoint × frequency = 5670 + 27560 + 9240 + 13400 = 55870

Step 5: Mean = Total of midpoint × frequency ÷ Total frequency:

Mean = 55870 ÷ 1000 = 55.87 g

Final Answer: 55.87 g


(ii) Find the probability that an egg has a mass greater than 56 g:

Step 1: Eggs with mass greater than 56 g = 154 + 200 = 354

Step 2: Probability = (Eggs with mass > 56 g) ÷ Total eggs:

Probability = 354 ÷ 1000 = 177 ÷ 500

Final Answer: 177 ÷ 500


Part (b):

A farmer makes a profit of $24,730 selling eggs.

(i) Write this profit correct to 2 significant figures:

Profit = $25,000

Final Answer: $25,000


(ii) Write this profit in standard form:

Profit = 2.473 × 104

Final Answer: 2.473 × 104


Part (c):

On a farm, there are 500 hens, correct to the nearest 10.

(i) Calculate the upper bound for the total number of eggs all the hens lay in that year:

Step 1: Upper bound of hens = 500 + 5 = 505

Step 2: Upper bound of eggs per hen = 320 + 10 = 330

Step 3: Total upper bound = 505 × 330 = 166,650

Final Answer: 166,650


(ii) Calculate the lower bound for the difference between the number of hens on two farms:

Step 1: Lower bound for 500 hens = 500 - 5 = 495

Step 2: Lower bound for 800 hens = 800 - 10 = 790

Step 3: Difference = 790 - 495 = 285

Final Answer: 285

View All Member Area Resources

0580_s23_qp_41 Question 3 Solution

View All Member Area Resources

0580_m22_qp_22 Question 3 Solution

Question:

A journey starts at 21:15 one day and ends at 04:33 the next day. Calculate the time taken, in hours and minutes.

Solution:

  1. Calculate the time from 21:15 to midnight (00:00):

    21:15 to 00:00 = 2 hours and 45 minutes

  2. Calculate the time from midnight (00:00) to 04:33:

    00:00 to 04:33 = 4 hours and 33 minutes

  3. Add the times:
    • Hours: 2 + 4 = 6
    • Minutes: 45 + 33 = 78
  4. Convert 78 minutes into hours and minutes:

    78 minutes = 1 hour and 18 minutes

  5. Add the additional 1 hour to the total hours:
    • Total hours: 6 + 1 = 7
    • Remaining minutes:18

Final Answer: 7 hours and 18 minutes

View All Member Area Resources

0580_s22_qp_42 Question 3 Solution

Given:f(x) = 1 + 4x , g(x) = x^2

(a) Find:

(i) g(f(3)) :

  1. Substitute x = 3 into f(x) :

    f(3) = 1 + 4(3) = 13

  2. Substitute f(3) = 13 into g(x) :

    g(13) = 13^2 = 169

Final Answer: g(f(3)) = 169


(ii) f(g(x):

  1. Substitute g(x) = x^2 into f(x) :

    f(g(x) = 1 + 4(x^2)

Final Answer: f(g(x) = 1 + 4x^2


(iii) f^{-1}(f(x)) :

  1. \( f^{-1}(f(x)) returns x , since f^{-1} is the inverse of f :

    f^{-1}(f(x)) = x

Final Answer: f^{-1}(f(x) = x


(b) Find the value of x when f(x) = 15 :

  1. Substitute f(x) = 1 + 4x into the equation:

    1 + 4x = 15

  2. Solve for x :

    4x = 15 - 1 = 14

    x = 14 ÷ 4 = 3.5

Final Answer: x = 3.5 or x = 7 ÷ 2

View All Member Area Resources

0580_s22_qp_21 Question 25 Solution

Question:

w is proportional to the square root of y: w = jsqrt{y}.
y is inversely proportional to x: y = c/x.
When x = 4, y = 16, and w = 8.
Find w in terms of x.


Solution:

  1. From w = jsqrt{y}, substitute w = 8 and y = 16:

    8 = jsqrt{16}

    8 = j x 4

    j = 2

  2. From y = c/x, substitute y = 16 and x = 4:

    16 = c/4

    c = 64

  3. Substitute y = 64/x into w = jsqrt{y}:

    w = 2sqrt{64/x}

    w = 16/sqrt{x}

Final Answer: w = 16/sqrt{x}

IGCSE Past Papers Math

IGCSE Past Papers Math

Examiner report : 

March 2015  0580_m15_er.pdf

 March 2016 0580_m16_er.pdf

March 2017 0580_m17_er.pdf

March 2018 0580_m18_er.pdf

March 2019 0580_m19_er.pdf

Grade Threshold:

March 2015 question paper & Mark Scheme Paper 1: [Core]

0580_m15_qp_12.pdf  /  0580_m15_ms_12.pdf  

May  2015 question paper & Mark Scheme Paper 1: [Core]

0580_s15_qp_11.pdf / 0580_s15_ms_11.pdf  [Core]

0580_s15_qp_12.pdf / 0580_s15_ms_12.pdf  [Core]

0580_s15_qp_13.pdf / 0580_s15_ms_13.pdf  [Core]

October  2015 question paper & Mark Scheme Paper 1: [Core]

0580_w15_qp_11.pdf / 0580_w15_ms_11.pdf  [Core]

0580_w15_qp_12.pdf / 0580_w15_ms_12.pdf  [Core]

0580_w15_qp_13.pdf 0580_w15_ms_13.pdf  [Core]

March 2016 question paper & Mark Scheme Paper 1: [Core]

0580_m16_qp_12.pdf  / 0580_m16_ms_12.pdf 

May  2016 question paper & Mark Scheme Paper 1: [Core]

0580_s16_qp_11.pdf / 0580_s16_ms_11.pdf  [Core]

0580_s16_qp_12.pdf / 0580_s16_ms_12.pdf  [Core]

0580_s16_qp_13.pdf / 0580_s16_ms_13.pdf  [Core]

October  2016 question paper & Mark Scheme Paper 1: [Core]

0580_w16_qp_11.pdf / 0580_w16_ms_11.pdf  [Core]

0580_w16_qp_12.pdf / 0580_w16_ms_12.pdf  [Core]

0580_w16_qp_13.pdf / 0580_w16_ms_13.pdf  [Core]

March 2017 question paper & Mark Scheme Paper 1: [Core]

0580_m17_qp_12.pdf   / 0580_m17_ms_12.pdf 

May 2017 question paper & Mark Scheme Paper 1: [Core]

0580_s17_qp_11.pdf / 0580_s17_ms_11.pdf  [Core]

0580_s17_qp_12.pdf / 0580_s17_ms_12.pdf  [Core]

0580_s17_qp_13.pdf / 0580_s17_ms_13.pdf  [Core]

October 2017 question paper & Mark Scheme Paper 1: [Core]

0580_w17_qp_11.pdf  /  0580_w17_ms_11.pdf  [Core]

0580_w17_qp_12.pdf  / 0580_w17_ms_12.pdf  [Core]

0580_w17_qp_13.pdf  / 0580_w17_ms_13.pdf  [Core]

March 2018 question paper & Mark Scheme Paper 1: [Core]

 0580_m18_qp_12.pdf  0580_m18_ms_12.pdf   [Core]

May 2018 question paper & Mark Scheme Paper 1: [Core]

0580_s18_qp_11.pdf  /  0580_s18_ms_11.pdf  [Core]

0580_s18_qp_12.pdf  /   0580_s18_ms_12.pdf  [Core]

0580_s18_qp_13.pdf  / 0580_s18_ms_13.pdf  [Core]

October  2018 question paper & Mark Scheme Paper 1: [Core]

0580_w18_qp_11.pdf  /   0580_w18_ms_11.pdf  [Core]

0580_w18_qp_12.pdf  / 0580_w18_ms_12.pdf  [Core]

0580_w18_qp_13.pdf / 0580_w18_ms_13.pdf  [Core]

March 2019 question paper & Mark Scheme Paper 1: [Core]

0580_m19_qp_12.pdf  / 0580_m19_ms_12.pdf   [Core]

May 2019 question paper & Mark Scheme Paper 1: [Core]

0580_s19_qp_11.pdf   /   0580_s19_ms_11.pdf  [Core]

0580_s19_qp_12.pdf   / 0580_s19_ms_12.pdf  [Core]

0580_s19_qp_13.pdf   / 0580_s19_ms_13.pdf  [Core]

October  2019 question paper & Mark Scheme Paper 1: [Core]

0580_w19_qp_11.pdf  /   0580_w19_ms_11.pdf  [Core]

0580_w19_qp_12.pdf  / 0580_w19_ms_12.pdf  [Core]

0580_w19_qp_13.pdf / 0580_w19_ms_13.pdf   [Core]

March  2020 question paper & Mark Scheme Paper 1: [Core]

0580_m20_qp_12.pdf  / 0580_m20_ms_12.pdf   [Core]

May  2020 question paper & Mark Scheme Paper 1: [Core]

0580_s20_qp_11.pdf   /   0580_s20_ms_11.pdf  [Core]

0580_s20_qp_12.pdf   / 0580_s20_ms_12.pdf  [Core]

0580_s20_qp_13.pdf   / 0580_s20_ms_13.pdf  [Core]

October  2020 question paper & Mark Scheme Paper 1: [Core]

0580_w20_qp_11.pdf   /   0580_w20_ms_11.pdf  [Core]

0580_w20_qp_12.pdf   / 0580_w20_ms_12.pdf  [Core]

0580_w20_qp_13.pdf   / 0580_w20_ms_13.pdf  [Core]

 

 

0580 IGCSE Math Paper 2 [ Extended] 

March 2015 question paper & Mark Scheme Paper 2 Extended

0580_m15_qp_22.pdf  /   0580_m15_ms_22.pdf [ Extended]

October  2015 question paper & Mark Scheme Paper 2:[ Extended]

0580_w15_qp_21.pdf  /    0580_w15_ms_21.pdf [ Extended]

0580_w15_qp_22.pdf   /  0580_w15_ms_22.pdf [ Extended]

0580_w15_qp_23.pdf  / 0580_w15_ms_23.pdf [ Extended]

March 2016 question paper & Mark Scheme paper 2 [ Extended]

0580_m16_qp_22.pdf /  0580_m16_ms_22.pdf [Extended]

March 2017 question paper & Mark Scheme paper 2 [ Extended]

0580_m17_qp_22.pdf  / 0580_m17_ms_22.pdf  [ Extended]

May  2017 question paper & Mark Scheme Paper 2:[ Extended]

0580_s17_qp_21.pdf  /  0580_s17_ms_21.pdf [ Extended]

0580_s17_qp_22.pdf  / 0580_s17_ms_22.pdf [ Extended]

0580_s17_qp_23.pdf  / 0580_s17_ms_23.pdf [ Extended]

October  2017 question paper & Mark Scheme Paper 2:[ Extended]

0580_w17_qp_21.pdf  /    0580_w17_ms_21.pdf [ Extended]

0580_w17_qp_22.pdf   /  0580_w17_ms_22.pdf [ Extended]

0580_w17_qp_23.pdf  / 0580_w17_ms_23.pdf [ Extended]

March 2018 question paper & Mark Scheme paper 2 [ Extended]

May 2018 question paper & Mark Scheme Paper 2:[ Extended]

0580_s18_qp_21.pdf  /  0580_s18_ms_21.pdf [ Extended]

0580_s18_qp_22.pdf  /  0580_s18_ms_22.pdf [ Extended]

0580_s18_qp_23.pdf  / 0580_s18_ms_23.pdf [ Extended]

October  2018 question paper & Mark Scheme Paper 2:[ Extended]

0580_w18_qp_21.pdf  /   0580_w18_ms_21.pdf [ Extended]

0580_w18_qp_22.pdf  / 0580_w18_ms_22.pdf [ Extended]

0580_w18_qp_23.pdf  /  0580_w18_ms_23.pdf [ Extended]

March 2019 question paper & Mark Scheme Paper 2:[ Extended]

0580_m19_qp_22.pdf / 

May 2019 question paper & Mark Scheme Paper 2:[ Extended]

 0580_s19_qp_21.pdf   /

0580_s19_qp_22.pdf  /  

0580_s19_qp_23.pdf  /  

October  2019 question paper & Mark Scheme Paper 2:[ Extended]

0580_w19_qp_21.pdf  /  0580_w19_ms_21.pdf [ Extended]

0580_w19_qp_22.pdf  / 0580_w19_ms_22.pdf [ Extended]

0580_w19_qp_23.pdf  / 0580_w19_ms_23.pdf [ Extended]

 

 

 

0580 IGCSE Math Paper 3 Core

October  2018 question paper & Mark Scheme Paper 3: [Core]

0580_s18_qp_31.pdf  / 0580_s18_ms_31.pdf 

0580_s18_qp_32.pdf  / 0580_s18_ms_32.pdf

0580_s18_qp_33.pdf / 0580_s18_ms_33.pdf

 

 

0580 IGCSE Math Paper 4 Extended

May 2015 question paper  & Mark Scheme paper 4 [ Extended]

0580_s15_qp_41.pdf  / 0580_s15_ms_41.pdf

0580_s15_qp_42.pdf  /  0580_s15_ms_42.pdf

0580_s15_qp_43.pdf  /  0580_s15_ms_43.pdf

October 2015 question paper  & Mark Scheme paper 4 [ Extended]

0580_w15_qp_41.pdf  / 0580_w15_ms_41.pdf

0580_w15_qp_42.pdf  /  0580_w15_ms_42.pdf

0580_w15_qp_43.pdf  /  0580_w15_ms_43.pdf

May 2016 question paper  & Mark Scheme paper 4 [ Extended]

0580_s16_qp_41.pdf  / 0580_s16_ms_41.pdf

0580_s16_qp_42.pdf  /  0580_s16_ms_42.pdf

0580_s16_qp_43.pdf  /  0580_s16_ms_43.pdf

October 2016 question paper  & Mark Scheme paper 4 [ Extended]

0580_w16_qp_41.pdf  / 0580_w16_ms_41.pdf

0580_w16_qp_42.pdf  /  0580_w16_ms_42.pdf

0580_w16_qp_43.pdf  /  0580_w16_ms_43.pdf

May 2017 question paper  & Mark Scheme paper 4 [ Extended]

0580_s17_qp_41.pdf  / 0580_s17_ms_41.pdf

0580_s17_qp_42.pdf  /  0580_s17_ms_42.pdf

0580_s17_qp_43.pdf  /  0580_s17_ms_43.pdf

October 2017 question paper  & Mark Scheme paper 4 [ Extended]

0580_w17_qp_41.pdf  / 0580_w17_ms_41.pdf

0580_w17_qp_42.pdf  /  0580_w17_ms_42.pdf

0580_w17_qp_43.pdf  /  0580_w17_ms_43.pdf

May 2018 question paper  & Mark Scheme paper 4 [ Extended]

0580_s18_qp_41.pdf  / 0580_s18_ms_41.pdf

0580_s18_qp_42.pdf  /  0580_s18_ms_42.pdf

0580_s18_qp_43.pdf  /  0580_s18_ms_43.pdf

October 2018 question paper  & Mark Scheme paper 4 [ Extended]

0580_w18_qp_41.pdf  / 0580_w18_ms_41.pdf

0580_w18_qp_42.pdf  /  0580_w18_ms_42.pdf

0580_w18_qp_43.pdf  /  0580_w18_ms_43.pdf